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Abstract

In this paper, the dynamic behavior of two collinear symmetric interface cracks between two dissimilar magneto-
elastic material half planes under the harmonic anti-plane shear waves loading is investigated by Schmidt method. By
Fourier transform, the problem can be solved with a set of triple integral equations in which the unknown variable is the
the displacements across the crack surfaces. To solve the triple integral equations, the jump of the displacements acros
surface is expanded in a series of Jacobi polynomials. Numerical solutions of the stress intensity factor, the electric disp
intensity factor and the magnetic flux intensity factor are given. The relations among the electric filed, the magnetic fl
and the stress field are obtained.
 2004 Elsevier SAS. All rights reserved.

Keywords: Magneto-electro-elastic materials; Interface crack; Triple integral equations

1. Introduction

Composite material consisting of a piezoelectric phase and a piezomagnetic phase has drawn significant inter
cent years, due to the rapid development in adaptive material systems. In some cases, the coupling effect of p
tric/piezomagnetic composites can be even obtained a hundred times larger than that in a single-phase magn
material. Consequently, they are extensively used as electric packaging, sensors and actuators, e.g., magnetic fi
acoustic/ultrasonic devices, hydrophones, and transducers with the responsibility of electro-magneto-mechanical en
version (Wu and Huang, 2000). With increasingly wide application of piezoelectric and piezomagnetic composites
systems, cavity or crack problems in magnetoelectroelastic media have received considerable interest. When subjec
chanical, magnetic and electrical loads in service, these magneto-electro-elastic materials can fail prematurely du
defects, e.g. cracks, holes, etc. arising during their manufacturing process. Therefore, it is of great importance to
magneto-electro-elastic interaction and dynamic fracture behavior of magneto-electro-elastic materials (Sih and So
Song and Sih, 2003; Wang and Mai, 2003; Gao et al., 2003d, 2003a; Spyropoulos et al., 2003). Liu et al. (2001) st
generalized 2D problem of an infinite magnetoelectroelastic plane with an elliptical hole. Gao et al. (2003b; 2003c), W
Mai (2004) also studied the fracture problem of the piezoelectric/piezomagnetic materials. The static fracture behavi
collinear cracks in the piezoelectric material has been investigated by Zhou et al. (2001). More recently, Zhou et a
considered the static fracture problem of the piezoelectric/piezomagnetic materials for the collinear symmetric interfac
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The development of piezoelectric-piezomagnetic materials has its roots in the early work of Van Suchtelen (1972) w
posed that the combination of piezoelectric-piezomagnetic phases may exhibit a new material property—the magne
coupling effect. Since then, there have not been many researchers studying magnetoelectric coupling effect in3–
CoFe2O4 composites, and most research results published were obtained in recent years (Wu and Huang, 2000; Sih
2003; Song and Sih, 2003; Wang and Mai, 2003; Gao et al., 2003d, 2003a; Spyropoulos et al., 2003; Liu et al., 2001; G
2003b, 2003c; Wang and Mai, 2003; Harshe et al., 1993; Avellaneda and Harshe, 1994; Nan, 1994; Benveniste, 199
and Kuo, 1997; Li, 2000; Zhou et al., 2004). However, relatively few works have been made for the dynamic fracture
in the magneto-electro-elastic materials due to the mathematical complexities. To our knowledge, the magneto-elec
dynamic behavior of magneto-electro-elastic materials with two collinear symmetric interface cracks subjected to the h
anti-plane shear waves has not been studied.

In this paper, the dynamic behavior of two collinear interface cracks between two dissimilar magneto-electro-elastic
half planes subjected to the harmonic anti-plane shear waves is investigated by use of an appropriate method, n
Schmidt method (Morse and Feshbach, 1958; Yan, 1967). The static solution in the reference (Zhou et al., 2004) is
procedure from the dynamic solution in the present paper. The Fourier transform is applied and a mixed boundary value
is reduced to a triple integral equations. To solve the triple integral equations, the jump of the displacements across
surfaces is expanded in a series of Jacobi polynomials. This process is quite different from those adopted in the refer
and Song, 2003; Song and Sih, 2003; Wang and Mai, 2003; Gao et al., 2003d, 2003a; Spyropoulos et al., 2003; Liu et
Gao et al., 2003b, 2003c; Wang and Mai, 2003) as mentioned above. Numerical solutions are obtained for the stress, t
displacement and the magnetic flux intensity factors.

2. Formulation of the problem

It is assumed that there are two collinear interface cracks of length 1− b between two dissimilar magneto-electro-elas
material half planes as shown in Fig. 1. 2b is the distance between two cracks (the solution of two collinear interface c
of lengtha − b in the magneto-electro-elastic materials can easily be obtained by a simple change in the numerica
of the present paper for crack length 1− b/a, a > b > 0). In this paper, the harmonic elastic anti-plane shear stress wa
vertically incident. Letω be the circular frequency of the incident wave.−τ0 is a magnitude of the incident wave. In wh
follows, the time dependence of all field quantities assumed to be of the form e−iωt will be suppressed but understood. T
piezoelectric/piezomagnetic boundary-value problem for anti-plane shear is considerably simplified if we consider only
of-plane displacement, the in-plane electric and the in-plane magnetic fields. As discussed in Soh’s (Soh et al., 200
since no opening displacement exists for the present anti-plane problem, the crack surfaces can be assumed to be
contact. Accordingly, the electric and magnetic potential, the normal electric displacement and the normal magnetic
assumed to be continuous across the crack surfaces. So the boundary conditions of the present problem are (In this
just consider the perturbation fields.):{

τ
(1)
yz (x,0+) = τ

(2)
yz (x,0−) = −τ0, b � |x| � 1,

w(1)(x,0+) = w(2)(x,0−), |x| < b, |x| > 1,
(1)

φ(1)(x,0+) = φ(2)(x,0−), D
(1)
y (x,0+) = D

(2)
y (x,0−), |x| � ∞, (2)

ψ(1)(x,0+) = ψ(2)(x,0−), B
(1)
y (x,0+) = B

(2)
y (x,0−), |x| � ∞, (3)

w(1)(x, y) = w(2)(x, y) = 0 for (x2 + y2)1/2 → ∞, (4)

Fig. 1. Two interface cracks between two dissimilar magneto-electro-elastic materials half planes.
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whereτ
(i)
zk

, D
(i)
k

andB
(i)
k

(k = x, y, i = 1,2) are the anti-plane shear stress, in-plane electric displacement and in-plan

netic flux, respectively.w(i), φ(i) andψ(i) are the mechanical displacement, the electric potential and the magnetic pot
respectively. Note that all quantities with superscripti (i = 1,2) refer to the upper half plane and the lower half plane a
Fig. 1, respectively. In this paper, we only consider thatτ0 is positive.

It is assumed that the magneto-electro-elastic material is transversely isotropic. So the constitutive equations for the
crack in the magneto-electro-elastic material can be expressed as

τ
(i)
zk

= c
(i)
44w(i)

,k + e
(i)
15φ(i)

,k + q
(i)
15ψ(i)

,k (k = x, y, i = 1,2), (5)

D
(i)
k

= e
(i)
15w(i)

,k − ε
(i)
11φ(i)

,k − d
(i)
11ψ(i)

,k (k = x, y, i = 1,2), (6)

B
(i)
k

= q
(i)
15w(i)

,k − d
(i)
11φ(i)

,k − µ
(i)
11ψ(i)

,k (k = x, y, i = 1,2), (7)

wherec
(i)
44 is shear modulus,e(i)

15 is piezoelectric coefficient,ε(i)
11 is dielectric parameter,q(i)

15 is piezomagnetic coefficient,d(i)
15 is

electromagnetic coefficient,µ(i)
11 is magnetic permeability.

The anti-plane governing equations are

c
(i)
44∇2w(i) + e

(i)
15∇2φ(i) + q

(i)
15∇2ψ(i) = ρ(i) ∂2w(i)

∂t2
(i = 1,2), (8)

e
(i)
15∇2w(i) − ε

(i)
11∇2φ(i) − d

(i)
11∇2ψ(i) = 0 (i = 1,2), (9)

q
(i)
15∇2w(i) − d

(i)
11∇2φ(i) − µ

(i)
11∇2ψ(i) = 0 (i = 1,2), (10)

where∇2 = ∂2/∂x2 + ∂2/∂y2 is the two-dimensional Laplace operator.ρ(i) is the density of the piezoelectric/piezomagne
materials. Because of the assumed symmetry in geometry and loading, it is sufficient to consider the problem for 0� x < ∞,
−∞ � y < ∞ only. A Fourier transform is applied to Eqs. (8)–(10). It is assumed that the solutions are



w(1)(x, y) = 2

π

∞∫
0

A1(s)e−γ1y cos(sx)ds,

φ(1)(x, y) = a1

a0
w(1)(x, y) + 2

π

∞∫
0

B1(s)e−sy cos(sx)ds (y � 0),

ψ(1)(x, y) = a2

a0
w(1)(x, y) + 2

π

∞∫
0

C1(s)e−sy cos(sx)ds,

(11)




w(2)(x, y) = 2

π

∞∫
0

A2(s)eγ2y cos(sx)ds,

φ(2)(x, y) = a4

a3
w(2)(x, y) + 2

π

∞∫
0

B2(s)esy cos(sx)ds (y � 0),

ψ(2)(x, y) = a5

a3
w(2)(x, y) + 2

π

∞∫
0

C2(s)esy cos(sx)ds,

(12)

whereA1(s), B1(s), C1(s), A2(s), B2(s) andC2(s) are unknown functions.

γ 2
1 = s2 − ω2/c2

1, c2
1 = µ(1)/ρ(1), µ(1) = c

(1)
44 + a1e

(1)
15

a0
+ a2q

(1)
15

a0
, a0 = ε

(1)
11 µ

(1)
11 − d

(1)2
11 ,

a1 = µ
(1)
11 e

(1)
15 − d

(1)
11 q

(1)
15 , a2 = q

(1)
15 ε

(1)
11 − d

(1)
11 e

(1)
15 , γ 2

2 = s2 − ω2/c2
2, c2

2 = µ(2)/ρ(2),

µ(2) = c
(2)
44 + a4e

(2)
15

a3
+ a5q

(2)
15

a3
, a3 = ε

(2)
11 µ

(2)
11 − d

(2)2
11 , a4 = µ

(2)
11 e

(2)
15 − d

(2)
11 q

(2)
15 , a5 = q

(2)
15 ε

(2)
11 − d

(2)
11 e

(2)
15 .

It can be obtainedγ1 = γ2 = s for ω = 0. Hence, the solutions ofw(i)(x, y), φ(i)(x, y) andψ(i)(x, y) in Eqs. (11), (12) will
be the same as the static solutions in the reference (Zhou et al., 2004) forω = 0.
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τ
(1)
yz (x, y) = − 2

π

∞∫
0

{
γ1µ(1)A1(s)e−γ1y + s

[
e
(1)
15 B1(s) + q

(1)
15 C1(s)

]
e−sy

}
cos(sx)ds, (13)

D
(1)
y (x, y) = 2

π

∞∫
0

s
[
ε
(1)
11 B1(s) + d

(1)
11 C1(s)

]
e−sy cos(sx)ds, (14)

B
(1)
y (x, y) = 2

π

∞∫
0

s
[
d

(1)
11 B1(s) + µ

(1)
11 C1(s)

]
e−sy cos(sx)ds, (15)

τ
(2)
yz (x, y) = 2

π

∞∫
0

{
γ2µ(2)A2(s)eγ2y + s

[
e
(2)
15 B2(s) + q

(2)
15 C2(s)

]
esy

}
cos(sx)ds, (16)

D
(2)
y (x, y) = − 2

π

∞∫
0

s
[
ε
(2)
11 B2(s) + d

(2)
11 C2(s)

]
esy cos(sx)ds, (17)

B
(2)
y (x, y) = − 2

π

∞∫
0

s
[
d

(2)
11 B2(s) + µ

(2)
11 C2(s)

]
esy cos(sx)ds. (18)

To solve the problem, the jump of the displacements across the crack surfaces is defined as follows:

f (x) = w(1)(x,0+) − w(2)(x,0−). (19)

Substituting Eqs. (11), (12) into Eq. (19), and applying the Fourier transform and the boundary conditions, it can be ob

f̄ (s) = A1(s) − A2(s), (20)
a1

a0
A1(s) − a4

a3
A2(s) + B1(s) − B2(s) = 0, (21)

a2

a0
A1(s) − a5

a3
A2(s) + C1(s) − C2(s) = 0. (22)

Substituting Eqs. (13)–(18) into Eqs. (1)–(3), it can be obtained

µ(1)γ1A1(s) + se
(1)
15 B1(s) + sq

(1)
15 C1(s) + µ(2)γ2A2(s) + se

(2)
15 B2(s) + sq

(2)
15 C2(s) = 0, (23)

ε
(1)
11 B1(s) + d

(1)
11 C1(s) + ε

(2)
11 B2(s) + d

(2)
11 C2(s) = 0, (24)

d
(1)
11 B1(s) + µ

(1)
11 C1(s) + d

(2)
11 B2(s) + µ

(2)
11 C2(s) = 0. (25)

By solving six Eqs. (20)–(25) with six unknown functionsA1(s), B1(s), C1(s), A2(s), B2(s), C2(s) and applying the boundar
condition (1) to the results, it can be obtained:

2

π

∞∫
0

g1(s)f̄ (s)cos(sx)ds = −τ0, b � x � 1, (26)

∞∫
0

f̄ (s)cos(sx)ds = 0, 0< x < b, x > 1, (27)

whereg1(s) is a known function (see Appendix). lims→∞ g1(s)/s = β1. Whereβ1 is a constant which depends on the prop

ties of the materials (see Appendix). When the properties of the upper and the lower half planes is the same,β1 = −c
(1)
44 /2. To

determine the unknown functions̄f (s), the triple integral equations (26), (27) must be solved.
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3. Solution of the triple integral equations

From the natural property of the displacement along the crack line, it can be obtained that the jump of the displa
across the crack surface is a finite, continuous and differentiable function. Hence, the jump of the displacements a
crack surfaces can be represented by the following series:

f (x) =
∞∑

n=0

bnP
(1/2,1/2)
n

(
x − (1+ b)/2

(1− b)/2

)(
1− (x − (1+ b)/2)2

((1− b)/2)2

)1/2
, for b � x � 1, (28)

wherebn is unknown coefficients to be determined andP
(1/2,1/2)
n (x) is a Jacobi polynomial (Gradshteyn and Ryzhik, 198

The Fourier transform of Eq. (28) are (Erdelyi, 1954)

f̄ (s) =
∞∑

n=0

bnFnGn(s)
1

s
Jn+1

(
s

1− b

2

)
, (29)

Fn = 2
√

π
�(n + 1+ 1/2)

n! , Gn(s) =




(−1)n/2 cos

(
s

1+ b

2

)
, n = 0,2,4,6, . . . ,

(−1)(n+1)/2 sin

(
s

1+ b

2

)
, n = 1,3,5,7, . . . ,

(30)

where�(x) andJn(x) are the Gamma and Bessel functions, respectively.
Substituting Eq. (29) into Eqs. (26), (27), Eq. (27) has been automatically satisfied. After integration with respectx in

[b, x], Eq. (26) reduces to

∞∑
n=0

bnFn

∞∫
0

g1(s)

s2
Gn(s)Jn+1

(
s

1− b

2

)[
sin(sx) − sin(sb)

]
ds = −πτ0

2
(x − b). (31)

From the relationship (Gradshteyn and Ryzhik, 1980),

∞∫
0

1

s
Jn(sa)sin(bs)ds =




sin[nsin−1(b/a)]
n

, a > b,

an sin(nπ/2)

n[b +
√

b2 − a2]n
, a < b,

(32)

∞∫
0

1

s
Jn(sa)cos(bs)ds =




cos[nsin−1(b/a)]
n

, a > b,

an cos(nπ/2)

n[b +
√

b2 − a2]n
, a < b

(33)

the semi-infinite integral in Eq. (31) can be modified as

∞∫
0

1

s

{
β1 +

[
g1(s)

s
− β1

]}
Jn+1

(
s

1− b

2

)
cos

(
s

1+ b

2

)
sin(sx)ds

= β1

2(n + 1)

{
((1− b)/2)n+1 sin((n + 1)π/2)

{x + (1+ b)/2+
√

(x + (1+ b)/2)2 − ((1− b)/2)2}n+1
− sin

[
(n + 1)sin−1

(
1+ b − 2x

1− b

)]}

+
∞∫

0

1

s

[
g1(s)

s
− β1

]
Jn+1

(
s

1− b

2

)
cos

(
s

1+ b

2

)
sin(sx)ds, (34)

∞∫
0

1

s

{
β1 +

[
g1(s)

s
− β1

]}
Jn+1

(
s

1− b

2

)
sin

(
s

1+ b

2

)
sin(sx)ds

= β1

2(n + 1)

{
cos

[
(n + 1)sin−1

(
1+ b − 2x

1− b

)]
− ((1− b)/2)n+1 cos((n + 1)π/2)

{x + (1+ b)/2+
√

(x + (1+ b)/2)2 − ((1− b)/2)2}n+1

}

+
∞∫

1

s

[
g1(s)

s
− β1

]
Jn+1

(
s

1− b

2

)
sin

(
s

1+ b

2

)
sin(sx)ds. (35)
0
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It can be seen that the integrands in the right end of Eqs. (34), (35) tend rapidly to zero. Thus the semi-infinite inte
Eqs. (34), (35) can be numerical evaluated easily. Eq. (31) can now be solved for the coefficientsbn by the Schmidt method
(Morse and Feshbach, 1958; Yan, 1967). The method is omitted in the present work. It can be seen in references (Z
1999a, 1999b; 2001).

4. Intensity factors

The coefficientsbn are known, so that the entire perturbation stress field, the perturbation electric displacement

magnetic flux can be obtained. However, in fracture mechanics, it is of importance to determine the perturbation stressτ
(1)
yz , the

perturbation electric displacementD
(1)
y and the magnetic fluxB(1)

y in the vicinity of the crack tips. In the case of the pres

study,τ (1)
yz , D

(1)
y andB

(1)
y along the crack line can be expressed respectively as

τ
(1)
yz (x,0) = 2

π

∞∑
n=0

bnFn

∞∫
0

g1(s)

s
Gn(s)Jn+1

(
s

1− b

2

)
cos(xs)ds, (36)

D
(1)
y (x,0) = 2

π

∞∑
n=0

bnFn

∞∫
0

g2(s)

s
Gn(s)Jn+1

(
s

1− b

2

)
cos(xs)ds, (37)

B
(1)
y (x,0) = 2

π

∞∑
n=0

bnFn

∞∫
0

g3(s)

s
Gn(s)Jn+1

(
s

1− b

2

)
cos(xs)ds, (38)

whereg2(s) andg3(s) are known functions (see Appendix). lims→∞ g2(s)/s = β2, lims→∞ g3(s)/s = β3. Whereβ2 andβ3
are two constants which depend on the properties of the materials (see Appendix). When the properties of the upp

lower half planes is the same,β2 = −e
(1)
15 /2 andβ3 = −q

(1)
15 /2. As discussed in reference (Zhou et al., 2004), the singular

of the stress field, the electric displacement and the magnetic flux can be expressed respectively as follows (x > 1 orx < b):

τ = β1

π

∞∑
n=0

bnFnHn(b, x), (39)

D = β2

π

∞∑
n=0

bnFnHn(b, x), (40)

B = β3

π

∞∑
n=0

bnFnHn(b, x), (41)

where

Hn(b, x) =
{

(−1)n+1R(b, x,n), 0< x < b,

−R(b, x,n), x > 1,

R(b, x,n) = 2(1− b)n+1√
|1+ b − 2x|2 − (1− b)2

[|1+ b − 2x| +
√

|1+ b − 2x|2 − (1− b)2
]n+1

.

At the left tip of the right crack, we obtain the stress intensity factorKL as

KL = lim
x→b−

√
2(b − x) · τ = −β1

π

√
2

1− b

∞∑
n=0

(−1)nbnFn. (42)

At the right tip of the right crack, we obtain the stress intensity factorKR as

KR = lim
x→1+

√
2(x − 1) · τ = −β1

π

√
2

1− b

∞∑
bnFn. (43)
n=0
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At the left tip of the right crack, we obtain the electric displacement intensity factorKD
L as

KD
L = lim

x→b−
√

2(b − x) · D = −β2

π

√
2

1− b

∞∑
n=0

(−1)nbnFn = β2

β1
KL . (44)

At the right tip of the right crack, we obtain the electric displacement intensity factorKD
R as

KD
R = lim

x→1+
√

2(x − 1) · D = −β2

π

√
2

1− b

∞∑
n=0

bnFn = β2

β1
KR. (45)

At the left tip of the right crack, we obtain the magnetic flux intensity factorKB
L as

KB
L = lim

x→b−
√

2(b − x) · B = −β3

π

√
2

1− b

∞∑
n=0

(−1)nbnFn = β3

β1
KL . (46)

At the right tip of the right crack, we obtain the magnetic flux intensity factorKB
R as

KB
R = lim

x→1+
√

2(x − 1) · D = −β3

π

√
2

1− b

∞∑
n=0

bnFn = β3

β1
KR. (47)

5. Conclusions

As discussed in the works (Zhou et al., 1999a; 1999b), it can be seen that the Schmidt method is performed satisfact
first ten terms of infinite series in Eq. (31) are retained. The behavior of the sum of the series keeps steady with the i
number of terms in (31). The constants of materials-I are assumed to be that (Song and Sih, 2003; Huang and K

Li, 2000) c
(1)
44 = 44.0 (GPa),e(1)

15 = 5.8 (C/m2), ε
(1)
11 = 5.64 × 10−9 (C2/N m2), q

(1)
15 = 275.0 (N/A m), d

(1)
11 = 0.005×

10−9 (N s/V C), µ
(1)
11 = −297.0× 10−6 (N s2/C2), ρ(1) = 1500 kg/m3. The constants of materials-II are assumed to be

c
(2)
44 = 54.0 (GPa),e(2)

15 = 7.8 (C/m2), ε(2)
11 = 3.64×10−9 (C2/N m2), q(2)

15 = 175.0 (N/A m), d(2)
11 = 0.008×10−9 (N s/V C),

µ
(2)
11 = −197.0×10−6 (N s2/C2), ρ(2) = 2000 kg/m3. The constants of materials-III are assumed to be thatc

(2)
44 = 34.0 (GPa),

e
(2)
15 = 4.8 (C/m2), ε(2)

11 = 4.64×10−9 (C2/N m2) , q(2)
15 = 195.0 (N/A m), d(2)

11 = 0.004×10−9 (N s/V C), µ(2)
11 = −201.0×

10−6 (N s2/C2), ρ(2) = 1000 kg/m3. At −l � x � l, y = 0, it can be obtained thatτ (1)
yz /τ0 is very close to negative unity

Hence, the solution of present paper can also be proved to satisfactory the boundary conditions (1). The numerical res
present paper are shown in Figs. 2–11.

From the results, the following observations are very significant:

(i) As discussed in the works (Zhou et al., 2004), the stress intensity factor does not depend on the properties of the
for the anti-plane shear static fracture problem in piezoelectric/piezomagnetic materials. However, the dynam
the electric displacement and the magnetic flux intensity factors not only depend on the crack length, the wave

Fig. 2. The stress intensity factor versusω/c1 for
b = 0.1 (materials-I/materials-II).

Fig. 3. The electric displacement intensity factor versus
ω/c1 for b = 0.1 (materials-I/materials-II).
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fference
c singular
he electro-
Fig. 4. The magnetic flux intensity factor versusω/c1 for
b = 0.1 (materials-I/materials-II).

Fig. 5. The stress intensity factor versusb for ω/c1 = 0.4
(materials-I/materials-II).

Fig. 6. The electric displacement intensity factor versusb

for ω/c1 = 0.4 (materials-I/materials-II).
Fig. 7. The magnetic flux intensity factor versusb for
ω/c1 = 0.4 (materials-I/materials-II).

Fig. 8. The stress intensity factor versusω/c1 for b = 0.1
(materials-I/materials-III).

Fig. 9. The electric displacement intensity factor versus
ω/c1 for b = 0.1 (materials-I/materials-II).

the circular frequency of the incident waves, but also on the properties of the materials. This is the primary di
between the present paper and the works (Zhou et al., 2004). From the results, it can be shown that the dynami
stress in piezoelectric/piezomagnetic materials carries the same forms as those in the general elastic materials. T
magneto-elastic coupling effects can be obtained as shown in Eqs. (42)–(47).
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as shown
However,
.
agnitude.

gnetic flux

r, the

301), the
nt Young
rovince.
Fig. 10. The stress intensity factor versusb for ω/c1 = 0.4
(materials-I/materials-III).

Fig. 11. The electric displacement intensity factor versusb

for ω/c1 = 0.4 (materials-I/materials-III).

(ii) The interaction of the two collinear cracks decrease when the distance between the two collinear cracks increases
in Figs. 5–7 and 10, 11. The intensity factors at the inner crack tips are bigger than those at the outer crack tips.
the intensity factors at the inner and outer crack tips are almost overlapped forb � 0.5 as shown in Figs. 5–7 and 10, 11

(iii) The dynamic stress intensity factors tend to increase with the frequency reaching a peak and then to decrease in m
In Figs. 2–4 and 8, 9, the intensity factors at the inner crack tips are smaller than those at the outer crack tips forω/c1 > 2.3.
These phenomena may be caused by the coupling effects among the mechanical, the electric field and the ma
field.

(iv) The variations ofK/τ0, KD/τ0 andKB/τ0 with ω/c1 or b have a same tendency as shown in Figs. 2–11. Howeve
amplitude values ofK/τ0, KD/τ0 andKB/τ0 are different. The amplitude values ofKD/τ0 andKB/τ0 are very small
as shown in Figs. 3, 4, 6, 7, 9 and 11.
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Appendix

[X1] =




1 0 0
a1

a0
1 0

a2

a0
0 1


 , [X2] =




−1 0 0

−a4

a3
−1 0

−a5

a3
0 −1


 , [X3] =




µ(1)γ1 se
(1)
15 sq

(1)
15

0 sε
(1)
11 sd

(1)
11

0 sd
(1)
11 sµ

(1)
11


 ,

[X4] =




µ(2)γ2 se
(2)
15 sq

(2)
15

0 sε
(2)
11 sd

(2)
11

0 sd
(2)
11 sµ

(2)
11


 , [X5] = [X1] − [X2][X4]−1[X3],

[X6] =




−µ(1)γ1 −se
(1)
15 −sq

(1)
15

0 sε
(1)
11 sd

(1)
11

0 sd
(1)
11 sµ

(1)
11


 ,

[X7] =
[

x11(s) x12(s) x13(s)

x21(s) x22(s) x23(s)

]
= [X6][X5]−1, g1(s) = x11(s), g2(s) = x21(s), g3(s) = x31(s),
x31(s) x32(s) x33(s)
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Struc-

(11–12),

jected to
[Y3] =




µ(1) e
(1)
15 q

(1)
15

0 ε
(1)
11 d

(1)
11

0 d
(1)
11 µ

(1)
11


 , [Y4] =




µ(2) e
(2)
15 q

(2)
15

0 ε
(2)
11 d

(2)
11

0 d
(2)
11 µ

(2)
11


 ,

[Y5] = [X1] − [X2][Y4]−1[Y3], [Y6] =




−µ(1) −e
(1)
15 −q

(1)
15

0 ε
(1)
11 d

(1)
11

0 d
(1)
11 µ

(1)
11


 ,

[Y7] =
[

y11 y12 y13
y21 y22 y23
y31 y32 y33

]
= [Y6][Y5]−1, β1 = y11, β2 = y21, β3 = y31.
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