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Abstract

In this paper, the dynamic behavior of two collinear symmetric interface cracks between two dissimilar magneto-electro-
elastic material half planes under the harmonic anti-plane shear waves loading is investigated by Schmidt method. By using the
Fourier transform, the problem can be solved with a set of triple integral equations in which the unknown variable is the jump of
the displacements across the crack surfaces. To solve the triple integral equations, the jump of the displacements across the crac
surface is expanded in a series of Jacobi polynomials. Numerical solutions of the stress intensity factor, the electric displacement
intensity factor and the magnetic flux intensity factor are given. The relations among the electric filed, the magnetic flux field
and the stress field are obtained.
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1. Introduction

Composite material consisting of a piezoelectric phase and a piezomagnetic phase has drawn significant interest in re-
cent years, due to the rapid development in adaptive material systems. In some cases, the coupling effect of piezoelec-
tric/piezomagnetic composites can be even obtained a hundred times larger than that in a single-phase magnetoelectric
material. Consequently, they are extensively used as electric packaging, sensors and actuators, e.g., magnetic field probes
acoustic/ultrasonic devices, hydrophones, and transducers with the responsibility of electro-magneto-mechanical energy con-
version (Wu and Huang, 2000). With increasingly wide application of piezoelectric and piezomagnetic composites in smart
systems, cavity or crack problems in magnetoelectroelastic media have received considerable interest. When subjected to me
chanical, magnetic and electrical loads in service, these magneto-electro-elastic materials can fail prematurely due to some
defects, e.g. cracks, holes, etc. arising during their manufacturing process. Therefore, it is of great importance to study the
magneto-electro-elastic interaction and dynamic fracture behavior of magneto-electro-elastic materials (Sih and Song, 2003;
Song and Sih, 2003; Wang and Mai, 2003; Gao et al., 2003d, 2003a; Spyropoulos et al., 2003). Liu et al. (2001) studied the
generalized 2D problem of an infinite magnetoelectroelastic plane with an elliptical hole. Gao et al. (2003b; 2003c), Wang and
Mai (2004) also studied the fracture problem of the piezoelectric/piezomagnetic materials. The static fracture behavior of two
collinear cracks in the piezoelectric material has been investigated by Zhou et al. (2001). More recently, Zhou et al. (2004)
considered the static fracture problem of the piezoelectric/piezomagnetic materials for the collinear symmetric interface cracks.
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The development of piezoelectric-piezomagnetic materials has its roots in the early work of Van Suchtelen (1972) who pro-
posed that the combination of piezoelectric-piezomagnetic phases may exhibit a new material property—the magnetoelectric
coupling effect. Since then, there have not been many researchers studying magnetoelectric coupling effectsin BaTiO
CoFe04 composites, and most research results published were obtained in recent years (Wu and Huang, 2000; Sih and Song
2003; Song and Sih, 2003; Wang and Mai, 2003; Gao et al., 2003d, 2003a; Spyropoulos et al., 2003; Liu et al., 2001; Gao et al.,
2003b, 2003c; Wang and Mai, 2003; Harshe et al., 1993; Avellaneda and Harshe, 1994; Nan, 1994; Benveniste, 1995; Huang
and Kuo, 1997; Li, 2000; Zhou et al., 2004). However, relatively few works have been made for the dynamic fracture analysis
in the magneto-electro-elastic materials due to the mathematical complexities. To our knowledge, the magneto-electro-elastic
dynamic behavior of magneto-electro-elastic materials with two collinear symmetric interface cracks subjected to the harmonic
anti-plane shear waves has not been studied.

In this paper, the dynamic behavior of two collinear interface cracks between two dissimilar magneto-electro-elastic material
half planes subjected to the harmonic anti-plane shear waves is investigated by use of an appropriate method, namely the
Schmidt method (Morse and Feshbach, 1958; Yan, 1967). The static solution in the reference (Zhou et al., 2004) is a limiting
procedure from the dynamic solution in the present paper. The Fourier transform is applied and a mixed boundary value problem
is reduced to a triple integral equations. To solve the triple integral equations, the jump of the displacements across the crack
surfaces is expanded in a series of Jacobi polynomials. This process is quite different from those adopted in the references (Sik
and Song, 2003; Song and Sih, 2003; Wang and Mai, 2003; Gao et al., 2003d, 2003a; Spyropoulos et al., 2003; Liu et al., 2001;
Gao et al., 2003b, 2003c; Wang and Mai, 2003) as mentioned above. Numerical solutions are obtained for the stress, the electric
displacement and the magnetic flux intensity factors.

2. Formulation of the problem

It is assumed that there are two collinear interface cracks of lengtlh between two dissimilar magneto-electro-elastic
material half planes as shown in Fig. I & the distance between two cracks (the solution of two collinear interface cracks
of lengtha — b in the magneto-electro-elastic materials can easily be obtained by a simple change in the numerical values
of the present paper for crack length-1/a, a > b > 0). In this paper, the harmonic elastic anti-plane shear stress wave is
vertically incident. Letw be the circular frequency of the incident waverg is a magnitude of the incident wave. In what
follows, the time dependence of all field quantities assumed to be of the folth will be suppressed but understood. The
piezoelectric/piezomagnetic boundary-value problem for anti-plane shear is considerably simplified if we consider only the out-
of-plane displacement, the in-plane electric and the in-plane magnetic fields. As discussed in Soh's (Soh et al., 2000) works,
since no opening displacement exists for the present anti-plane problem, the crack surfaces can be assumed to be in perfec
contact. Accordingly, the electric and magnetic potential, the normal electric displacement and the normal magnetic flux are
assumed to be continuous across the crack surfaces. So the boundary conditions of the present problem are (In this paper, w
just consider the perturbation fields.):

P 0 =@ 0 =—10, b<IxI<L, )
w(l)(x,0+):w(2)(x,0_), x| <b, |x|>1,
P (x, 01 =¢@x,07), PP, 01 =DPx,07), |xl<oo, )
O, 0M=y@x,07), BPx,01)=BP(x,07), |xl<oo, €)
w0, ) =w@x, ) =0 forx2+yHY2 - o, (4)
A
4
e X
— b——b—
1 1

Fig. 1. Two interface cracks between two dissimilar magneto-electro-elastic materials half planes.
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wherer;,’c), D,E” and B,E’) (k=x,y,i=1,2) are the anti-plane shear stress, in-plane electric displacement and in-plane mag-
netic flux, respectivelyw®, @ andy ) are the mechanical displacement, the electric potential and the magnetic potential,
respectively. Note that all quantities with superscrigt = 1, 2) refer to the upper half plane and the lower half plane as in
Fig. 1, respectively. In this paper, we only consider thgats positive.

Itis assumed that the magneto-electro-elastic material is transversely isotropic. So the constitutive equations for the mode lli
crack in the magneto-electro-elastic material can be expressed as

z(llc) = cfﬁw( ) +e§_15)¢(i),k +q§_l5)1//(i),k k=x,y, i=12), (5)
DI = efQw® y —elp®  —ally®  (k=x,y, i=12), 6)

B =qigw® p —af)¢®  —ufly @y k=x,y,i=12), @)

wherec |s shear modulusaz,15 is piezoelectric coeffluent,il) is dielectric parameteq,i’g is piezomagnetic coefficierxii’g is
electromagnetlc coefﬂuen;tz,ll is magnetic permeability.
The anti-plane governing equations are

. o 92y

Cﬂvzwm+e§zs>v2¢(z)+qgv2w(z)=p(z);)7 (i=12), ®)
Qv ® — v2p _ glv2y D —0 (i=1,2), )
g2 V2w ® —af)v?e® — ufiviy© =0 (=12, (10)

wherev2 = 32/5x2 4 92/3y2 is the two-dimensional Laplace operatof’) is the density of the piezoelectric/piezomagnetic
materials. Because of the assumed symmetry in geometry and loading, it is sufficient to consider the probl€m for8,
—o00 < y < oo only. A Fourier transform is applied to Egs. (8)—(10). It is assumed that the solutions are

o0
wD(x, y) = 2 / A1(s) e " cogsx) ds,
"0
o0
oD,y = Lw®(x, )+ 2 / Bi(s)e™ cog(sx)ds  (y = 0), (11)
ao )
o0
YOG, ) = 2D,y + 2 f C1(s) € cogsx) ds,
“ 0
o
w®(x,y) = E / Ao(s) €2 cogsx) ds,
"o
o0
¢ (x,y) =2 —3 w® (x, y)+§ f Bo(s)€” cogsx)ds (v <0), (12)
o0
Y@ (x,y) = (2)(x »+ - 2 /Cz(s)eyy cosx)ds,
“ 0
whereA1(s), B1(s), C1(s), A2(s), B2(s) andCa(s) are unknown functions.
@ @
yi=s2 0?2, E=pD/p® O =cf+ % + a2§§5 . ap=ePud —alh?,
S N NP L 0 N S ST
N R Y X I X SN N

as a3

It can be obtainegi = y» = s for w = 0. Hence, the solutions af) (x, y), ¢@ (x, y) andy D (x, y) in Egs. (11), (12) will
be the same as the static solutions in the reference (Zhou et al., 200436t
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So from Egs. (5)—(7), we have

o0
P y) = j / {y1n® A1) €7 + s[elD Bi(s) + ¢{E C1(s)] €} coslsx) ds, (13)
N
DM (x,y) = ; / s[eY Bi(s) + iy C1(5)] €% costsx) ds, (14)
0
0
(l)(x y) = j/s[d(l)Bl(s)—f—M(l)Cl(s)] e %Y cogsx) ds, (15)
0
o0
tyz) (x,y) = /{yz,u(z)Az(s) ey + s[e:(é) Bo(s) + q%) Ca(s)] €} cog(sx) ds, (16)
o0
D@ (x,y) = —5 / s[633 Ba(s) +di3 Ca(s)] € cossx) ds, 17)
0
o0
BP(x,y) = —5 / [@{9 Ba(s) + 15 Ca(s)] € costsx) ds. (18)
0

To solve the problem, the jump of the displacements across the crack surfaces is defined as follows:
F@) =wPx,0h) —w@(x,07). (19)

Substituting Egs. (11), (12) into Eq. (19), and applying the Fourier transform and the boundary conditions, it can be obtained

f(s) = A1(s) — Ag(s), (20)
al aa
L A1(s) — 22 A(s) + By(s) — Ba(s) =0, (21)
ap as
22 A1(s) — B A(s) + C1(s) — Cals) =0, (22)
ap as

Substituting Egs. (13)—(18) into Egs. (1)—(3), it can be obtained

uPy1as(s) + Y€15 ) By (s) + Y6115)C1(Y) + 1P yr45(s) + sels ) Ba(s) + Yf115)C2(Y) = (23)
M B1(s) +dY C1(5) + 6 Bats) + did Ca(s) =0, (24)
43 Bi(s) + u) C1(5) + d\9 Ba(s) + u$3 Ca(s) = 0 (25)

By solving six Egs. (20)—(25) with six unknown functioAs (s), B1(s), C1(s), A2(s), Ba(s), C2(s) and applying the boundary
condition (1) to the results, it can be obtained:

o
;/&(S)f(w cogsx)ds =—79, b<x<1, (26)
o
/f_(s)COS(sx)ds=O, O<x<b, x>1, 27)
0

whereg1 (s) is a known function (see Appendix). lim, » g1(s)/s = B1. Whereg, is a constant which depends on the proper-
ties of the materials (see Appendix). When the properties of the upper and the lower half planes is tifg same l)/2 To
determine the unknown functions), the triple integral equations (26), (27) must be solved.
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3. Solution of thetripleintegral equations

From the natural property of the displacement along the crack line, it can be obtained that the jump of the displacements
across the crack surface is a finite, continuous and differentiable function. Hence, the jump of the displacements across the
crack surfaces can be represented by the following series:

00 2\ 1/2
_ (1/2,1/2) X—(l+b)/2>< e =(A+b)/2 )
fx)= E by P, (7(1 /2 1 —((1 — b)/2)2 , forb<x <1, (28)

whereb,, is unknown coefficients to be determined anﬂ/z’l/z) (x) is a Jacobi polynomial (Gradshteyn and Ryzhik, 1980).
The Fourier transform of Eq. (28) are (Erdelyi, 1954)

_ > 1 1-b
f(5)=anFnGn(s);Jn+l<ST>’ (29)
n=0 :
1+b
(—1)"/2cos(s—>, n=0,2,4,6,...,
Fn+1+1/2 2
: (—1)("+1>/Zsin(s7>, n=1357,...,

wherel (x) andJ, (x) are the Gamma and Bessel functions, respectively.
Substituting Eq. (29) into Egs. (26), (27), Eq. (27) has been automatically satisfied. After integration with respiect to
[, x]1, Eq. (26) reduces to

Z b Fp / 81(5) Gn(s)JnH( 1- b) [sin(sx) — sin(sh)] ds = —@( —b). (31)
From the relatlonshlp (Gradshteyn and Ryzhik, 1980),
. P—
001 sin[n sin (b/a)]’ b,
. n
/ ShGa)sinbs)ds =1 o) , (32)
— <b,
0 n[b + Vb2 —a?n
in—1
001 cognsin (b/a)]’ b,
n
/ ;Jn (sa)cogbs)ds = a" cosn /2) , (33)
Y,
0 n[b + Vb2 —a?n
the semi-infinite integral in Eq. (31) can be modified as
00 -
/ } {ﬂl + [gl(s) - p1 }J,H_l(s ﬂ) cos(s 1+ b) sin(sx) ds
s s | 2
0

B1 { (L=b)/2"Lsin((n + D) /2) —Sin[(n—l—l) Sin_1(1+b—2x):|}

T 20+ (x+@A45)/2+(x + (L +b)/22 - (1-b)/2)2)n+1 1-b
+/ €|:g1(s) ﬁ:| n+1< 1;b)COS<s1 b)sin(sx)ds, (34)
)
/%{,3 +|:g1(s) —,31:|} n+1( #) Sin(sl b)sin(sx)ds
0

{cos[(n+1) Sm_l(l-l—b—Zx)} B (1—b)/2" cos(n + 1) /2) }
1-b X+ A+b)/24+/(x+1+b)/22 - (L—b)/2)2+1

o0
1-b\ . ( 1+D)\ .
+/S|: 1(S) _/31] n+1< 2 >5|n<5 2 )Sln(sx)dS. (35)
0

2(n + 1
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It can be seen that the integrands in the right end of Egs. (34), (35) tend rapidly to zero. Thus the semi-infinite integrals in
Egs. (34), (35) can be numerical evaluated easily. Eq. (31) can now be solved for the coefficibptthe Schmidt method

(Morse and Feshbach, 1958; Yan, 1967). The method is omitted in the present work. It can be seen in references (Zhou et al.,
1999a, 1999b; 2001).

4. Intensity factors

The coefficients,, are known, so that the entire perturbation stress field, the perturbation electric displacement and the
magnetic flux can be obtained. However in fracture mechanics, it is of importance to determine the perturbatiqﬁ)smess
perturbation electric displaceme D and the magnetic quB(l) in the vicinity of the crack tips. In the case of the present
study,rvz) D(l) andB(l) along the crack line can be expressed respectively as

P, 0= Zb,,Fn/ gl(S)Gn(s)Jn+1<s1_b>Cos(xs)ds, (36)
DM (x,0) = anpnfgz(s) Gn(s)J,,+1( 1_b>cos(xs)ds, (37)
B (x,0 = Zb,,an“(‘)Gn(s)JnH( l_b>cos(xs)ds, (38)

nO

wheregs(s) andga(s) are known functions (see Appendix). im o g2(s)/s = B2, liMms_ o0 g3(s) /s = B3. Whereg and 83

are two constants which depend on the properties of the materials (see Appendix). When the properties of the upper and the
lower half planes is the samg, = —e<115)/2 andgs = _‘115)/2 As discussed in reference (Zhou et al., 2004), the singular parts

of the stress field, the electric displacement and the magnetic flux can be expressed respectively as fsllbwsy( < b):

ﬂ o0
=Y buFuHa(b.x), (39)
n=0
_& anFan(b x), (40)
n=0
p="2 Z by Fy Hy (b, ), (41)
T n=0

where
Hy (b, x) = { (—1"*+LR(b,x,n), O<x <b,
—R(, x,n), x>1,
21— b)n+l

R(b,x,n) = e
VIT+b— 22— 1 -b)2[|1+b—2x| + /|1 +b—2x|2— (1 - b)2]"

At the left tip of the right crack, we obtain the stress intensity faéipras
. B1 2 o n
KL= lm y2b—x) 1=——,/ — E (-D"by Fy. (42)
x—>b~ T V1-b =0

At the right tip of the right crack, we obtain the stress intensity fagigras

KR:xiqur\/Z(x— 1. r_——,/ anFn (43)
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At the left tip of the right crack, we obtain the electric displacement intensity fdcl_fbras

KP = lm 20 —x)- D_——‘/ Z( 1)”ann_%K (44)

x—b

At the right tip of the right crack, we obtain the electric displacement intensity faq%as

KR = lim y2(x-1)- D_——‘/ anFnz— . (45)
x—1t

At the left tip of the right crack, we obtain the magnetic flux intensity fatKé‘r as

KB =1 26—x).B=_"3 1’1an_@1< 46
L= lim v2(b -2 Vi3 Z( ) . (46)

X—>

At the right tip of the right crack, we obtain the magnetic flux intensity famér as
KE = lim 2(x - D_——,/ bF_ 47
R Ralin (x—=1)- Z nl'n (47)

5. Conclusions

As discussed in the works (Zhou et al., 1999a; 1999b), it can be seen that the Schmidt method is performed satisfactorily if the
first ten terms of infinite series in Eq. (31) are retained. The behavior of the sum of the series keeps steady with the increasing
number of terms in (31). The constants of materials-I are assumed to be that (Song and Sih, 2003; Huang and Kuo, 1997;

Li, 2000) ¢ = 44.0 (GPa),e{ = 5.8 (C/m?), {7 =564 x 1079 (C3/Nm?), ¢{ = 2750 (N/Am), d\7 = 0.005 x
109 (Ns/VC), “(111) =-2970x 1076 (Ns?/C?), ,0(1) = 1500 kg/m3. The constants of materials-Il are assumed to be that

c{2 =540 (GPa)e\2 =7.8(C/m?), £ =3.64x 1079 (C2/Nm?), ¢2 = 1750 (N/Am), d? =0.008x 109 (Ns/V C),

521) =—-1970x 1078 (Ns2/C?), p@ = 2000 kgm?. The constants of materials-Ill are assumed to bectfﬁét: 34.0 (GPa),

{2 =48(C/m?), {7 = 4.64x 1079 (C/Nm?) , 42 = 1950 (N/Am), d\7 =o0. OO4>< 109 (Ns/VC), ui = —2010x
1076 (Ns2/C?), ,0(2) =1000 kgm3. At —I <x <1, y =0, it can be obtained that'} /zq is very close to negative unity.
Hence, the solution of present paper can also be proved to satisfactory the boundary conditions (1). The numerical results of the
present paper are shown in Figs. 2-11.
From the results, the following observations are very significant:

(i) As discussed in the works (Zhou et al., 2004), the stress intensity factor does not depend on the properties of the material
for the anti-plane shear static fracture problem in piezoelectric/piezomagnetic materials. However, the dynamic stress,
the electric displacement and the magnetic flux intensity factors not only depend on the crack length, the wave velocity,

1.2] < Ir K}/,
s 1.04
09 2 08| -
< 0.6 ﬁo 0.61
< 04
0.3 021 Kp 7z,
00— oo
0005101520 25 30 0005101520 25 30
w/c, w/c,

Fig. 2. The stress intensity factor versugc, for Fig. 3. The electric displacement intensity factor versus
b = 0.1 (materials-l/materials-II). w/c1 for b = 0.1 (materials-l/materials-I1).
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40 ——————————— e
3.5 1.04
£ 39 08|
2 25 o
Z 20 < 06
< 15
10l 04
o5 ...+ 0.2
000510 15 20 25 30 00 02 04 06 08 10
1 b
Fig. 4. The magnetic flux intensity factor versugcq for Fig. 5. The stress intensity factor versu$or w/cq = 0.4
b = 0.1 (materials-lI/materials-11). (materials-lI/materials-II).
35—
T 30|
_ 25
=
x 20
% 15
1.0
00 02 04 06 08 10 00 02 o'.4b 06 08
Fig. 6. The electric displacement intensity factor versus Fig. 7. The magnetic flux intensity factor verstsfor
for w/cq = 0.4 (materials-l/materials-1I). w/c1 = 0.4 (materials-l/materials-I1).
12 1.0
10 < 08
- 08 % 06
< 06 <
0.4 04
02 T T T T T T T 0.2 T T T T T T T
0.0 05 1.0 1.5 20 25 30 00 05 101520 25 30
w/c w/c

Fig. 8. The stress intensity factor versuécq for b = 0.1 Fig. 9. The electric displacement intensity factor versus
(materials-l/materials-I11). w/cq for b = 0.1 (materials-l/materials-I1).

the circular frequency of the incident waves, but also on the properties of the materials. This is the primary difference
between the present paper and the works (Zhou et al., 2004). From the results, it can be shown that the dynamic singular
stress in piezoelectric/piezomagnetic materials carries the same forms as those in the general elastic materials. The electro
magneto-elastic coupling effects can be obtained as shown in Eqgs. (42)—(47).
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o N

0.8; £ 08
< 06 é 0.6

041 04

0.2 0.2

00 02 04 06 08 10 00 02 04 06 08 10

Fig. 10. The stress intensity factor versufor w/cq = 0.4 Fig. 11. The electric displacement intensity factor versus
(materials-l/materials-IIl). for w/cq1 = 0.4 (materials-l/materials-IIl).

(ii) The interaction of the two collinear cracks decrease when the distance between the two collinear cracks increases as shown
in Figs. 5-7 and 10, 11. The intensity factors at the inner crack tips are bigger than those at the outer crack tips. However,
the intensity factors at the inner and outer crack tips are almost overlapped:for5 as shown in Figs. 5-7 and 10, 11.

(i) The dynamic stress intensity factors tend to increase with the frequency reaching a peak and then to decrease in magnitude.
In Figs. 2—4 and 8, 9, the intensity factors at the inner crack tips are smaller than those at the outer craekigsfd.3.
These phenomena may be caused by the coupling effects among the mechanical, the electric field and the magnetic flux
field.

(iv) The variations ofK /g, KL /tg andK £ /g with w/c1 or b have a same tendency as shown in Figs. 2—11. However, the
amplitude values oK /tg, K2 /79 and K B /1 are different. The amplitude values &f° /zg and K 8 /g are very small
as shown in Figs. 3, 4, 6,7, 9 and 11.
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Appendix
r -1 1 1
all 00 aa ° nPrn 5‘355) sq§5)
o L0 - "1 0 Q)
[X1]1=| ao . [Xol= az , [X3l= 0 seq]  sdq7 |-
2 _% _ @ O
L % 01 as 0 1 0 sdi7  spqq

r 2 2
s sl

(Xal=| 0 s sa? |.  [Xsl=[X1]—[X2l[X4] [X3].
0 sa?

el sl

[X6l= 0 se(lji) sdﬂ') ,

0w

rx11(s)  x12(s)  x13(s) L
[X7]= x21(s) x22(s) xzs(S)} =[X6l[X5]" ", g1(s) =x11(s),  ga(s) = x21(s), g3(s) = x31(s),
Lx31(s) x32(s) x33(s5)
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n O D 2 @ 2

€15 915 ! €15 415
ral=| o &f af | ma=| o 2 a? |
@@ 2 @
0 diy my 0 diy ngg
1 (€3] €3]
M ey —qye
Vsl =[X1] - [X2llYal '¥al, [Yel=| o0 & af |,

D) D
0 dqy H11

Y11 Y12 Y13 .
[Y71=| y21 y22 23 |=1[YellYs] ", Bi=y11, Bo=y21. B3=y31.
y31 Y32 Y33
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